The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas

نویسندگان

  • Daishi Chen
  • Manfred Rauh
  • Michael Buchfelder
  • Ilker Y. Eyupoglu
  • Nicolai Savaskan
چکیده

Malignant gliomas are devastating neoplasia with limited curative treatment options. Temozolomide (TMZ, Temcat®, Temodal® or Temodar®) is a first-line treatment for malignant gliomas but the development of drug resistance remains a major concern. Activating transcription factor 4 (ATF4) is a critical oxido-metabolic regulator in gliomas, and its role in the pathogenesis of TMZ-resistance remains elusive. We investigated the effect of TMZ on human glioma cells under conditions of enhanced ATF4 expression (ATF4OE) and ATF4 knock down (ATF4KD). We monitored cell survival, ATF4 mRNA expression of ATF4 and xCT (SLC7a11) regulation within human gliomas. TMZ treatment induces a transcriptional response with elevated expression of ATF4, xCT and Nrf2, as a sign of ER stress and toxic cell damage response. ATF4 overexpression (ATF4OE) fosters TMZ resistance in human gliomas and inhibits TMZ-induced autophagy. Conversely, ATF4 suppression by small interfering RNAs (ATF4KD) leads to increased TMZ susceptibility and autophagy in comparison to wild type gliomas. ATF4OE gliomas show reduced cell cycle shift and apoptotic cell death, whereas ATF4KD gliomas reveal higher susceptibility towards cell cycle rearrangements. Hence, the migration capacity of ATF4OE glioma cells is almost not affected by TMZ treatment. In contrast, ATF4KD gliomas show a migratory stop following TMZ application. Mechanistically, xCT elevation is a consequence of ATF4 activation and increased levels of xCT amplifies ATF4-induced TMZ resistance. Our data show that ATF4 operates as a chemo-resistance gene in gliomas, and the tumor promoting function of ATF4 is mainly determined by its transcriptional target xCT. Therefore, therapeutic inactivation of ATF4 can be a promising strategy to overcome chemo-resistance and promote drug efficacy in human gliomas.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling.

A hallmark of obesity is selective suppression of hepatic insulin signaling ("insulin resistance"), but critical gaps remain in our understanding of the molecular mechanisms. We now report a major role for hepatic CaMKII, a calcium-responsive kinase that is activated in obesity. Genetic targeting of hepatic CaMKII, its downstream mediator p38, or the p38 substrate and stabilizer MK2 enhances in...

متن کامل

Central Activating Transcription Factor 4 (ATF4) Regulates Hepatic Insulin Resistance in Mice via S6K1 Signaling and the Vagus Nerve

Recent studies have revealed that the central nervous system, particularly the hypothalamus, is critical for regulating insulin sensitivity in peripheral tissues. The aim of our current study is to investigate the possible involvement of hypothalamic activating transcription factor 4 (ATF4) in the regulation of insulin sensitivity in the liver. Here, we show that overexpression of ATF4 in the h...

متن کامل

Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma.

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcriptio...

متن کامل

The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts.

The recent demonstration that osteoblasts have a role in controlling energy metabolism suggests that they express cell-specific regulatory genes involved in this process. Activating transcription factor 4 (ATF4) is a transcription factor that accumulates predominantly in osteoblasts, where it regulates virtually all functions linked to the maintenance of bone mass. Since Atf4-/- mice have small...

متن کامل

The Role of the Transcription Factor atF4iin Tumor Progression Under Nutrient Deprivation and Hypoxia

The transcription factor ATF4 regulates the expression of mRNAs involved in amino acid metabolism, redox homeostasis and ER stress responses. Its overexpression in human solid tumors suggests an important role in tumor biology. Here we report that inhibition of ATF4 expression blocks proliferation and survival of transformed cells, despite an initial activation of cytoprotective macroautophagy....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017